
2016 SCORING GUIDELINES

Question 5

The inside of a funnel of height 10 inches has circular cross sections, as shown in the figure above. At height h, the radius of the funnel is given by $r = \frac{1}{20}(3 + h^2)$, where $0 \le h \le 10$. The units of r and h are inches.

- (a) Find the average value of the radius of the funnel.
- (b) Find the volume of the funnel.
- (c) The funnel contains liquid that is draining from the bottom. At the instant when the height of the liquid is h = 3 inches, the radius of the surface of the liquid is decreasing at a rate of $\frac{1}{5}$ inch per second. At this instant, what is the rate of change of the height of the liquid with respect to time?
- (a) Average radius = $\frac{1}{10} \int_0^{10} \frac{1}{20} (3 + h^2) dh = \frac{1}{200} \left[3h + \frac{h^3}{3} \right]_0^{10}$ = $\frac{1}{200} \left(\left(30 + \frac{1000}{3} \right) - 0 \right) = \frac{109}{60}$ in
- $3: \begin{cases} 1 : integral \\ 1 : antiderivative \\ 1 : answer \end{cases}$
- (b) Volume = $\pi \int_0^{10} \left(\left(\frac{1}{20} \right) (3 + h^2) \right)^2 dh = \frac{\pi}{400} \int_0^{10} \left(9 + 6h^2 + h^4 \right) dh$ = $\frac{\pi}{400} \left[9h + 2h^3 + \frac{h^5}{5} \right]_0^{10}$ = $\frac{\pi}{400} \left(\left(90 + 2000 + \frac{100000}{5} \right) - 0 \right) = \frac{2209\pi}{40}$ in³
- $3: \left\{ \begin{array}{l} 1: integrand \\ 1: antiderivative \\ 1: answer \end{array} \right.$

(c) $\frac{dr}{dt} = \frac{1}{20}(2h)\frac{dh}{dt}$ $-\frac{1}{5} = \frac{3}{10}\frac{dh}{dt}$ $\frac{dh}{dt} = -\frac{1}{5} \cdot \frac{10}{3} = -\frac{2}{3} \text{ in/sec}$

 $3: \begin{cases} 2: \text{ chain rule} \\ 1: \text{ answer} \end{cases}$