AP® CALCULUS AB/CALCULUS BC 2017 SCORING GUIDELINES

Question 4

(a)
$$H'(0) = -\frac{1}{4}(91 - 27) = -16$$

 $H(0) = 91$

An equation for the tangent line is y = 91 - 16t.

The internal temperature of the potato at time t = 3 minutes is approximately $91 - 16 \cdot 3 = 43$ degrees Celsius.

(b)
$$\frac{d^2H}{dt^2} = -\frac{1}{4}\frac{dH}{dt} = \left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)(H - 27) = \frac{1}{16}(H - 27)$$

$$H > 27$$
 for $t > 0 \Rightarrow \frac{d^2H}{dt^2} = \frac{1}{16}(H - 27) > 0$ for $t > 0$

Therefore, the graph of H is concave up for t > 0. Thus, the answer in part (a) is an underestimate.

(c)
$$\frac{dG}{(G-27)^{2/3}} = -dt$$

$$\int \frac{dG}{(G-27)^{2/3}} = \int (-1) dt$$

$$3(G-27)^{1/3} = -t + C$$

$$3(91-27)^{1/3} = 0 + C \Rightarrow C = 12$$

$$3(G-27)^{1/3} = 12 - t$$

$$G(t) = 27 + \left(\frac{12-t}{3}\right)^3 \text{ for } 0 \le t < 10$$

The internal temperature of the potato at time t = 3 minutes is $27 + \left(\frac{12-3}{3}\right)^3 = 54$ degrees Celsius.

1: underestimate with reason

5:
$$\begin{cases} 1 : \text{ separation of variables} \\ 1 : \text{ antiderivatives} \\ 1 : \text{ constant of integration and} \\ \text{ uses initial condition} \\ 1 : \text{ equation involving } G \text{ and } t \\ 1 : G(t) \text{ and } G(3) \end{cases}$$

Note: max 2/5 [1-1-0-0-0] if no constant of integration

Note: 0/5 if no separation of variables