This was one of the two most difficult problems in the last 10 years.

- Out of the 300,000+ students that took the AP Test in 2017 worldwide, 49% received no points at all.
- But, it is just like any other problem we've done, only with different notation.

4. At time $t=0$, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ at time $t=0$, and the internal temperature of the potato is greater than $27^{\circ} \mathrm{C}$ for all times $t>0$. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{d H}{d t}=-\frac{1}{4}(H-27)$ where $H(t)$ is measured in degrees Celsius and $H(0)=91$.
(a) Write an equation for the line tangent to the graph of H at $t=0$. Use this equation to approximate the internal temperature of the potato at time $t=3$.
The two things needed for an equation of a tangent line at $t=0$ are:
\qquad

$$
=-\frac{1}{4}(91-27)
$$ is that we have H in

$$
=-\frac{1}{4}(64)
$$ our differential equation instead of t.

Remember, you
Tangent Line Equation:
can use any of these.

$$
\begin{aligned}
& y-91=-16(t-0) \\
& y-91=-16 t \\
& y=-16 t+91
\end{aligned}
$$

$$
\rightarrow y-91=-16 t
$$

To approximate $H(t)$ @ $t=3$, we simply just substitute $t=3$ into our tangent line equation and solve for y.

$$
\begin{aligned}
& y=-16(3)+91 \\
& y=-48+9 \\
& y=43
\end{aligned}
$$

The internal temperature of the potato at $t=3$ is approximately $\frac{43}{\uparrow}$ degrees. Any of these can be used as your answer here
4. At time $t=0$, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ at time $t=0$, and the internal temperature of the potato
is greater than $27^{\circ} \mathrm{C}$ for all times $t>0$. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{d H}{d t}=-\frac{1}{4}(H-27)$, where $H(t)$ is
measured in degrees Celsius and $H(0)=91$.
(b) Use $\frac{d^{2} H}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the
internal temperature of the potato at time $t=3$.
Recall, the $2^{\text {nd }}$ Derivative Test tells us if our function has a max or min at a critical number (list derivative used to find).
If the $2^{\text {nd }}$ derivative is positive, that means our function is concave up.

Which means there is a minimum (or underestimate for our problem).
If the $2^{\text {nd }}$ derivative is negative, that means our function is concave down, Which means there is a maximum (or overestimate for our problem).

$$
\begin{aligned}
& \frac{d H}{d t}=-\frac{1}{4}(H-27) \\
& \frac{d}{d t}\left[\frac{d H}{d t}\right.\left.=-\frac{1}{4} H+\frac{27}{4}\right] \begin{array}{l}
\text { We are taking the } \\
\text { derivative of the } \\
\text { st derivative with } \\
\text { respect to } t .
\end{array} \\
& \frac{d^{2} H}{d t^{2}}=-\frac{1}{4} \cdot \frac{d H}{d t}<\begin{array}{l}
\text { Derivative of } H \text { with } \\
\text { respect to } t .
\end{array} \\
& \frac{d^{2} H}{d t^{2}}=-\frac{1}{4}\left[-\frac{1}{4}(H-27)\right] \longleftarrow \frac{d H}{d t}
\end{aligned}
$$

We are told in the problem that $H(t)>27$ always.

$$
\frac{d^{2} H}{d t^{2}}=-\frac{1}{4}\left[-\frac{1}{4}(t)\right]=+\quad \text { Positive }
$$

Since $\frac{d^{2} H}{d t^{2}}$ is positive, $H(t)$ is concave up, meaning our answer in part (a) is an underestimate approximation. Good news, this whole part (b) was only worth one point.
4. At time $t=0$, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ at time $t=0$, and the internal temperature of the potato is greater than $27^{\circ} \mathrm{C}$ for all times $t>0$. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{d H}{d t}=-\frac{1}{4}(H-27)$, where $H(t)$ is measured in degrees Celsius and $H(0)=91$.
(c) For $t<10$, an alternate model for the internal temperature of the potato at time t minutes is the function G that satisfies the differential equation $\frac{d G}{d t}=-(G-27)^{2 / 3}$, where $G(t)$ is measured in degrees Celsius and $G(0)=91$. Find an expression for $G(t)$. Based on this model, what is the internal temperature of the potato at time $t=3$?
For this port, we are finding $G(t)$ given $\frac{d G}{d t}$. This means we must take the integral.

$$
\begin{gathered}
\frac{d G}{(G-27)^{2 / 3}}=-d t \leftarrow \begin{array}{l}
\text { Separate variables } \\
\text { before taking integral }
\end{array} \\
\int(G-27)^{-2 / 3} d G=\int-d t
\end{gathered} \begin{aligned}
& \text { May need to use } \\
& \text { u-substitution }
\end{aligned}
$$

$$
\begin{aligned}
& u=G-27 \\
& d u=d G \\
& \frac{u^{1 / 3}}{1 / 3}=-t+C \\
& \begin{array}{l}
3(G-27)^{1 / 3}=-t+C \\
3(91-27)^{1 / 3}=-0+C
\end{array} \quad \begin{array}{l}
\text { Substitute } \\
\text { given condition }
\end{array} \\
& 3 \sqrt[3]{64}=C \quad \begin{array}{l}
\text { of } G(0)=91
\end{array} \\
& 3(4)=C=12 \\
& 3(G-27)^{1 / 3}=-t+12 \\
& (G-27)^{1 / 3}=\frac{-t+12}{3} \\
& \text { Now, solve } \\
& \text { for } G .
\end{aligned}
$$

$$
\begin{aligned}
G(t) & =\left(\frac{-t+12}{3}\right)^{3}+27 \text { for } 0<t<10 \\
G(3) & =\left(\frac{-3+12}{3}\right)^{3}+27 \\
& =\left(\frac{9}{3}\right)^{3}+27 \\
& =3^{3}+27 \\
& =27+27
\end{aligned}
$$

$$
G(3)=54
$$

The internal temperature of the potato at $t=3$ is $54^{\circ} \mathrm{C}$.

