AP® CALCULUS AB 2018 SCORING GUIDELINES

Question 5

(a) The average rate of change of f on the interval $0 \le x \le \pi$ is $\frac{f(\pi) - f(0)}{\pi - 0} = \frac{-e^{\pi} - 1}{\pi}.$

1 : answer

(b) $f'(x) = e^x \cos x - e^x \sin x$ $f'\left(\frac{3\pi}{2}\right) = e^{3\pi/2}\cos\left(\frac{3\pi}{2}\right) - e^{3\pi/2}\sin\left(\frac{3\pi}{2}\right) = e^{3\pi/2}$

The slope of the line tangent to the graph of f at $x = \frac{3\pi}{2}$ is $e^{3\pi/2}$.

(c) $f'(x) = 0 \Rightarrow \cos x - \sin x = 0 \Rightarrow x = \frac{\pi}{4}, x = \frac{5\pi}{4}$

x	f(x)
0	1
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}e^{\pi/4}$
$\frac{5\pi}{4}$	$-\frac{1}{\sqrt{2}}e^{5\pi/4}$
2π	$e^{2\pi}$

3: $\begin{cases} 1 : sets \ f'(x) = 0 \\ 1 : identifies \ x = \frac{\pi}{4}, \ x = \frac{5\pi}{4} \\ as \ candidates \\ 1 : answer \ with \ justification \end{cases}$

The absolute minimum value of f on $0 \le x \le 2\pi$ is $-\frac{1}{\sqrt{2}}e^{5\pi/4}$.

(d) $\lim_{x \to \pi/2} f(x) = 0$

Because g is differentiable, g is continuous.

$$\lim_{x \to \pi/2} g(x) = g\left(\frac{\pi}{2}\right) = 0$$

By L'Hospital's Rule,

 $\lim_{x \to \pi/2} \frac{f(x)}{g(x)} = \lim_{x \to \pi/2} \frac{f'(x)}{g'(x)} = \frac{-e^{\pi/2}}{2}.$

1: g is continuous at $x = \frac{\pi}{2}$ and limits equal 0 1 : applies L'Hospital's Rule

Note: $\max 1/3$ [1-0-0] if no limit notation attached to a ratio of derivatives