
AP® CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES

Question 3

The figure above shows the graph of the piecewise-linear function f. For $-4 \le x \le 12$, the function g is defined by

$$g(x) = \int_2^x f(t) \, dt.$$

- (a) Does g have a relative minimum, a relative maximum, or neither at x = 10? Justify your answer.
- (b) Does the graph of g have a point of inflection at x = 4? Justify your answer.
- (c) Find the absolute minimum value and the absolute maximum value of g on the interval $-4 \le x \le 12$. Justify your answers.
- (d) For $-4 \le x \le 12$, find all intervals for which $g(x) \le 0$.

Graph of f

- (a) The function g has neither a relative minimum nor a relative maximum at x = 10 since g'(x) = f(x) and $f(x) \le 0$ for $8 \le x \le 12$.
- (b) The graph of g has a point of inflection at x = 4 since g'(x) = f(x) is increasing for $2 \le x \le 4$ and decreasing for $4 \le x \le 8$.
- (c) g'(x) = f(x) changes sign only at x = -2 and x = 6.

$$\begin{array}{c|cc}
x & g(x) \\
-4 & -4 \\
-2 & -8 \\
6 & 8 \\
12 & -4
\end{array}$$

On the interval $-4 \le x \le 12$, the absolute minimum value is g(-2) = -8 and the absolute maximum value is g(6) = 8.

(d) $g(x) \le 0$ for $-4 \le x \le 2$ and $10 \le x \le 12$.

- 1: g'(x) = f(x) in (a), (b), (c), or (d)
- 1: answer with justification
- 1: answer with justification
- 4: $\begin{cases}
 1 : \text{considers } x = -2 \text{ and } x = 6 \\
 \text{as candidates} \\
 1 : \text{considers } x = -4 \text{ and } x = 12 \\
 2 : \text{answers with justification}
 \end{cases}$

2 : intervals