AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2014 SCORING GUIDELINES

Question 4

Train A runs back and forth on an east-west section of railroad track. Train A 's velocity, measured in meters per minute, is given by a differentiable function $v_{A}(t)$, where time t is measured in minutes. Selected values for $v_{A}(t)$

t (minutes)	0	2	5	8	12
$v_{A}(t)$ (meters /minute)	0	100	40	-120	-150

(a) Find the average acceleration of train A over the interval $2 \leq t \leq 8$.
(b) Do the data in the table support the conclusion that train A 's velocity is -100 meters per minute at some time t with $5<t<8$? Give a reason for your answer.
(c) At time $t=2$, train A 's position is 300 meters east of the Origin Station, and the train is moving to the east. Write an expression involving an integral that gives the position of train A, in meters from the Origin Station, at time $t=12$. Use a trapezoidal sum with three subintervals indicated by the table to approximate the position of the train at time $t=12$.
(d) A second train, train B, travels north from the Origin Station. At time t the velocity of train B is given by $v_{B}(t)=-5 t^{2}+60 t+25$, and at time $t=2$ the train is 400 meters north of the station. Find the rate, in meters per minute, at which the distance between $\operatorname{train} A$ and train B is changing at time $t=2$.
(a) average accel $=\frac{v_{A}(8)-v_{A}(2)}{8-2}=\frac{-120-100}{6}=-\frac{110}{3} \mathrm{~m} / \mathrm{min}^{2}$
(b) v_{A} is differentiable $\Rightarrow v_{A}$ is continuous
$v_{A}(8)=-120<-100<40=v_{A}(5)$
Therefore, by the Intermediate Value Theorem, there is a time t,
$5<t<8$, such that $v_{A}(t)=-100$.
(c) $s_{A}(12)=s_{A}(2)+\int_{2}^{12} v_{A}(t) d t=300+\int_{2}^{12} v_{A}(t) d t$
$\int_{2}^{12} v_{A}(t) d t \approx 3 \cdot \frac{100+40}{2}+3 \cdot \frac{40-120}{2}+4 \cdot \frac{-120-150}{2}$

$$
=-450
$$

$s_{A}(12) \approx 300-450=-150$
The position of Train A at time $t=12$ minutes is approximately 150 meters west of Origin Station.
(d) Let x be train A 's position, y train B 's position, and z the distance between $\operatorname{train} A$ and train B.
$z^{2}=x^{2}+y^{2} \Rightarrow 2 z \frac{d z}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}$
$x=300, y=400 \Rightarrow z=500$
$v_{B}(2)=-20+120+25=125$
$500 \frac{d z}{d t}=(300)(100)+(400)(125)$
$\frac{d z}{d t}=\frac{80000}{500}=160$ meters per minute

1 : average acceleration
$2:\left\{\begin{array}{l}1: v_{A}(8)<-100<v_{A}(5) \\ 1: \text { conclusion, using IVT }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { position expression } \\ 1: \text { trapezoidal sum } \\ 1: \text { position at time } t=12\end{array}\right.$
$3:\left\{\begin{array}{c}2: \text { implicit differentiation of } \\ \quad \text { distance relationship } \\ 1: \text { answer }\end{array}\right.$

$4 \quad 4$ 4
 Δ 定
 4
 cic^{2}
 4
 $44 A_{1}$

NO CALCULATOR ALLOWED

t (minutes)	0	2	5	8	12
$v_{A}(t)$ (meters $/$ minute)	0	100	40	-120	-150

4. Train A runs back and forth on an east-west section of railroad track. Train A 's velocity, measured in meters per minute, is given by a differentiable function $v_{A}(t)$, where time t is measured in minutes. Selected values for $v_{A}(t)$ are given in the table above.
(a) Find the average acceleration of train A over the interval $2 \leq t \leq 8$.

$$
\frac{v(8)-v(2)}{8-2} \rightarrow \frac{-120-100}{6} \rightarrow \frac{-220}{6} \rightarrow \frac{-110}{3} \mathrm{~m} / \mathrm{min}^{2}
$$

(b) Do the data in the table support the conclusion that train A 's velocity is -100 meters per minute at some time t with $5<t<8$? Give a reason for your answer.

Yes; because $v(8)=-120$ and $v(5)=40$ and the Function is differentiable and thus continuous, the train's velocity must be $-100 \mathrm{~m} / \mathrm{min}$ at sow ce point between $5<t<8$ according to the intermediate value theorem.

NO CALCULATOR ALLOWED

(c) At time $t=2$, train A 's position is 300 meters east of the Origin Station, and the train is moving to the east. Write an expression involving an integral that gives the position of $\operatorname{train} A$, in meters from the Origin Station, at time $t=12$. Use a trapezoidal sum with three subintervals indicated by the table to approximate the position of the train at time $t=12$.
$x(12) \approx 3 \cdot \frac{1}{2} \cdot(140)+3 \cdot \frac{1}{2} \cdot(-80)+4 \cdot \frac{1}{2} \cdot(-270)+300$ $210-120-540+300$. 210-240-120

- $30-120$
(d) A second train, train B, travels north from the Origin Station. At time t the velocity of train B is given by $v_{B}(t)=-5 t^{2}+60 t+25$, and at time $t=2$ the train is 400 meters north of the station. Find the rate, in meters per minute, at which the distance between train A and train B is changing at time $t=2$.

$$
\begin{aligned}
\frac{d B}{d t}= & -5 t^{2}+60 t+25 \rightarrow 125 \mathrm{u} / \mathrm{min} \\
& -20+120+25
\end{aligned}
$$

$$
\frac{d A}{d t}=100 \mathrm{~m} / \mathrm{m}^{120+2}
$$

$$
120+5 \rightarrow 126
$$

$$
24
$$

$$
\times \quad 1 \geq 2
$$

$$
\begin{aligned}
& A^{2}+B^{2}=D^{2} \\
& 2 A \frac{d A}{d t}+2 B \frac{d B}{d t}=20 \frac{d D}{d t}
\end{aligned}
$$

$$
600(100)+800(125)=1000 \frac{d 0}{d t}
$$

$$
60000+100000=1000 \frac{d D}{d t}
$$

$$
\begin{aligned}
& 100000=1000 \frac{d D}{d t} \\
& \frac{160,000}{1000}=\frac{d D}{d t} \rightarrow \frac{d D}{d t}=160 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

NO CALCULATOR ALLOWED

t (minutes)	0	2	5	8	12
$v_{A}(t)$ (meters $/$ minute)	0	100	40	-120	-150

4. Train A runs back and forth on an east-west section of railroad track. Train A 's velocity, measured in meters per minute, is given by a differentiable function $v_{A}(t)$, where time t is measured in minutes. Selected values for $v_{A}(t)$ are given in the table above.
(a) Find the average acceleration of train A over the interval $2 \leq t \leq 8$.

$$
\begin{aligned}
\bar{a} & =\frac{V_{A}(8)-V_{A}(2)}{8-2}=\frac{-120-100}{4}=-\frac{200}{4} \\
& =-55 \text { meters } / \text { minute }
\end{aligned}
$$

(b) Do the data in the table support the conclusion that train A 's velocity is -100 meters per minute at some time t with $5<t<8$? Give a reason for your answer.

Yes, since $V_{A}(t), 3$ continuous and difteventrable, The velocity of $\operatorname{drain} A$ must at some the t with $5<t<8$ equal- 100 moters/minute because $V_{A}(5)=40$ and $V_{A}(8)=$ -120.

NO CALCULATOR ALLOWED
(c) At time $t=2$, train A's position is 300 meters east of the Origin Station, and the train is moving to the east. Write an expression involving an integral that gives the position of train A, in meters from the Origin Station, at time $t=12$. Use a trapezoidal sum with three subintervals indicated by the table to approximate the position of the train at time $t=12$.

t (minutes)	0	2	5	8	12
$v_{A}(t)$ (meters $/$ minute)	0	100	40	-120	-150

4. Train A runs back and forth on an east-west section of railroad track. Train A's velocity, measured in meters per minute, is given by a differentiable function $v_{A}(t)$, where time t is measured in minutes. Selected values for $v_{A}(t)$ are given in the table above.
(a) Find the average acceleration of train \AA over the interval $2 \leq t \leq 8$.

$$
\frac{-120-100}{8-2}=\frac{-220}{6} \mathrm{~mm} / \mathrm{min}^{2}
$$

(b) Do the data in the table support the conclusion that train A 's velocity is -100 meters per minute at some time t with $5<t<8$? Give a reason for your answer.

$$
\text { Yes, The velocity drops from } 40 \mathrm{~m} / \mathrm{mm} \text { to }-120 \mathrm{~m} / \mathrm{min} \text {... }
$$ So at some print the velocity must have been at $-100 \mathrm{~m} / \mathrm{mm}$

NO CALCULATOR ALLOWED
(c) At time $t=2$, train A 's position is 300 meters east of the Origin Station, and the train is moving to the east. Write an expression involving an integral that gives the position of train A, in meters from the Origin Station, at time $t=12$. Use a trapezoidal sum with three subintervals indicated by the table to approximate the position of the train at time $t=12$.

$$
\begin{aligned}
300+\int_{2}^{12} v_{A}(t) d t & \approx 300+\frac{12-2}{6}\left(v_{A}(2)+2 v_{A}(s)+2 v_{A}(8)+v_{A}(2)\right) \\
& =300+\frac{10}{6}(100+80+-240+-150) \\
& =300+\frac{10}{6}(-210)
\end{aligned}
$$

$$
=300-\frac{2100}{6} \text { dusters west of the ongmstation }
$$

(d) A second train, train B, travels north from the Origin Station. At time t the velocity of train B is given by $v_{B}(t)=-5 t^{2}+60 t+25$, and at time $t=2$ the train is 400 meters north of the station. Find the rate, in meters per minute, at which the distance between train A and train B is changing at time $t=2$.


```
\[
a^{2}+b^{2}=c^{2}
\]
\[
300^{2}+400^{2}=c^{2}
\]
\[
900+1600=c^{2}
\]
\[
2500=c^{2}
\]
\[
500=C
\]
Sol metals par cornute

\title{
AP \({ }^{\circledR}\) CALCULUS AB/CALCULUS BC 2014 SCORING COMMENTARY
}

\section*{Question 4}

\section*{Overview}

In this problem students were given a table of values of a differentiable function \(v_{A}(t)\), the velocity of \(\operatorname{Train} A\), in meters per minute, for selected values of \(t\) in the interval \(0 \leq t \leq 12\), where \(t\) is measured in minutes. In part (a) students were expected to know that the average acceleration of Train \(A\) over the interval \(2 \leq t \leq 8\) is the average rate of change of \(v_{A}(t)\) over that interval. The unit of the average acceleration is meters per minute per minute. In part (b) students were expected to state clearly that \(v_{A}\) is continuous because it is differentiable, and thus the Intermediate Value Theorem implies the existence of a time \(t\) between \(t=5\) and \(t=8\) at which \(v_{A}(t)=-100\). In part (c) students were expected to show that the change in position over a time interval is given by the definite integral of the velocity over that time interval. If \(s_{A}(t)\) is the position of Train \(A\), in meters, at time \(t\) minutes, then \(s_{A}(12)-s_{A}(2)=\int_{2}^{12} v_{A}(t) d t\), which implies that \(s_{A}(12)=300+\int_{2}^{12} v_{A}(t) d t\) is the position at \(t=12\). Students approximated \(\int_{2}^{12} v_{A}(t) d t\) using a trapezoidal approximation. In part (d) students had to determine the relationship between train \(A\) 's position, train \(B\) 's position, and the distance between the two trains. Students needed to put together several pieces of information from different parts of the problem and use implicit differentiation to determine the rate at which the distance between the two trains is changing at time \(t=2\).

\section*{Sample: 4A}

\section*{Score: 9}

The student earned all 9 points.

\section*{Sample: 4B}

Score: 6

The student earned 6 points: no points in part (a), 2 points in part (b), 1 point in part (c), and 3 points in part (d). In part (a) the student makes an arithmetic mistake in computing the average acceleration. In part (b) the student's work is correct. In part (c) the student earned the point for the position expression, but the trapezoidal sum is incorrect. The student is not eligible for the answer point. In part (d) the student's work is correct.

\section*{Sample: 4C \\ Score: 3}

The student earned 3 points: 1 point in part (a), 1 point in part (b), 1 point in part (c), and no points in part (d). In part (a) the student's work is correct. In part (b) the student encloses -100 within the required interval, but the student does not provide a reason. In part (c) the position expression is correct, but the trapezoidal sum is incorrect. The student is not eligible for the answer point. In part (d) the student's work did not earn any points.```

